Lo studio delle singole molecole, che bisogno c'è?

Le molecole possono 'fare' cose complicate, o inattese. Se una popolazione è sincronizzata, una tecnica di studio di popolazione può caratterizzarle

Ma se le molecole fanno cose complicate e non sono sincronizzate, o diverse molecole fanno cose diverse ... è meglio caratterizzarle una alla volta.

Bulk Methods vs. Single Molecule Methods

Single Molecule Methods:

- Molecules display a fast, instantaneous dynamics
- Behavior appear random and stochastic
- Fluctuations are predominant
- Molecules are seen to co-exist in various states. Populations are multimodal
- Molecules can be found in states far from the mean of the population (extreme states)

Single molecule fluorescence

• Can it be done? How? Why?

- Yes. In many different ways.

• Reasons for single molecule fluorescence:

– To examine molecular heterogeneity and diversity

 To observe intermediates or structural changes in processes that cannot be synchronized

- monitor time-course of fluorescence
- kinetic trajectories of single molecules
 - conformational changes of single molecules
 - spectral fluctuations of single molecules
 - excited-state dynamics
 - catalytic turnover of single molecules
 - macromolecular associations of single molecules
 - translational and rotational motion

Why single Molecule Methods?

The microscopic view matters in describing the cell interior:

Many cellular processes, such as:

Chromosome replication and segregation

DNA transcription, recombination, and RNA translation

Are often carried out by a few molecules. Far from displaying

smooth dynamics these process are stochastic in nature.

One molecule in an *E. coli* cell (about $1 \mu m^3$) in volume is at a concentration of ~ 1.6 nM.

Why single Molecule Methods?

The advent of methods of single molecule manipulation has made it possible, for the first time to:

Measure the forces that maintain the 3D structure of macromolecules

Characterize the stress-strain relationships of molecules

Measure the forces generated in chemical & biochemical reactions

Investigate time-averaged and time-dependent fluctuations

Characterize the dynamics of molecular motors

Exert External forces and torques to alter the extent and fate of chem. Rxns. Single molecule fluorescence: Experimental approaches

- Solution measurements:
 - Fluctuation Correlation Spectroscopy
 - Confocal
 - Multiphoton
 - Photon Counting Histogram / FIDA
- Immobilized molecules:
 - TIRF
 - Scanning confocal
 - Scanning 2-photon
- Imaging:
 - Fluorescence microscopy
 - FLIM (FLIM-FRET)

Single molecule fluorescence: theoretical principles

- Require the ability to generate and detect sufficient number of photons to discriminate the single molecule from background and from other molecules
- Probability of observation of a molecule < 1
- A single fluorophore typically emits 105 photons before bleaching

Single molecule fluorescence: experimental considerations

Excitation

- High NA objective lens
- "Bright" fluorophores
- High extinction coefficient
 - High quantum yield
- Exclude quenchers
- particularly molecular oxygen!
- O2 scavengers include
 β-mercaptoethanol
 (BME), catalase

Emission

- Wavelength dependence
 of detectors
- Spectral separation from excitation
- Efficient detection optics
- Autofluorescence and

contaminant

fluorescence

- Photobleaching and ISC
- Scatter:
 - elastic (Rayleigh)
 - inelastic (Raman)

Fluctuation Correlation Spectroscopy: theoretical principle

excitation source

At low concentrations and/or in VERY small observation volume

non-equilibrium behavior fluctuations in particle number

Correlation Analysis

Autocorrelation: Statistical method for determination of randomness in timederived data sets

- commonly used in electronics and signal-processing

Confocal vs. multiphoton

Detector aperture is at the image focal plane of objective CONFOCAL Out of focus excitation light is screened by aperture

Excitation α (laser intensity)²

... excitation ONLY occurs at the focal point

- mode-locked Ti:Sapph laser
- average power ~1W

2-photon excitation

2 photons must interact with the same fluorophore at the same time

Maria Göppert-Mayer (1931)

Requires photon flux ~10¹⁸ s⁻¹ cm⁻²

E α 1/ λ .: 2 x 900nm photons ~ 1 x 450nm

Solution measurements: Strengths and weaknesses

- Pros:
 - Solution measurement!
 - Experimentally easy
 - Can assay many many events quickly
 - Can access very fast processes, very shortlived species
 - Wide time-variation
 - In vivo measurements are possible!

- Cons:
 - Requires low concentration of fluorophores
 - Data stream is I vs t
 - Diffusion rate α with MW $^{1/3}$
 - Small numbers of very fluorescent particles can kill analysis (aggregates)
 - Contaminant fluorescence

Single molecule fluorescence: immobilized molecules

- true "single molecule" fluorescence
- functionalize a quartz microscope slide
 - Biotin/strepatividin
 - Ni-NTA / His-tagged proteins
 - antibody / antigen
 - agarose gel
- attach fluorescent labeled molecules
- monitor time-course of fluorescence

fluorescent biomolecules

Immobilized molecules: Strengths and weaknesses

- Pros:
 - Experimental artifacts from solution measurements are easily detected
 - Inhomogeneity of labeling is apparent
 - Eliminates any uncertainty in the nature of the observations
 - timescales longer than diffusion time accessible

- Cons:
 - Not a solution measurement!
 - Artifacts from immobilization
 - Orientation wrt surface may be a factor
 - Immobilization may make buffer exchange or addition of substrate difficult
 - Non-specific binding / aggregation
 - Contaminant fluorescence

Total Internal Reflection Fluorescence (TIRF): principles

$$\sin \theta_{c} = \frac{n_{1}}{n_{2}}$$
$$I_{z} = I_{0}e^{-z/d}$$

 incident laser is totally internally reflected
 generates an evanescent fi

- generates an evanescent field propagating along interface
- field extends \leq 100nm
- excitation only at interface, minimizes background
- widely used in lipid biophysics

NS3h: single molecule fluorescence

- TIRF
- immobilized NS3 (or immobilized RNA with labeled NS3 bound)
- ~30pM labeled NS3

- follow time-course of fluorescence from single molecules

Scanning Confocal Microscopy (LSCM)

- Rather than excite the entire field, use a laser to "scan" the field
- Detect emission using photomultiplier or photodiode
- Reconstruct a picture using software

- Image "sectioning" = z-axis slices allows 3-D image to be rendered or 2-D image can be examined
 2 types of scanning: move sample (early LSCM) move excitation (modern)
 galvanometer
 - Nipkow disc
- emission must be "descanned" must be colinear with excitation in order to pass through the pinhole

Single molecule FRET: conformational changes

TIRF and scanning comparison

- TIRF:
 - Acquisition rate limited by camera
 - Massively parallel data acquisition

Scanning

- Fast acquisition by PMT
- Scanning rate limited by photon acquisition